The Forbidden Island Project

10.08.2021

By Jonathan Yang, Zijian Guo, Colby Frison, Keerthana Krishnan, Eric Zhu

Team Jonathan
SLHS
Katy, TX 77494

Edition 4

Table of Contents:

Table of Contents:

Section I: About Us & Overview

Section II: Distribution of Work

Section III: Time Outline

Section IV: Current UML:

Section V: Classes, Methods, and Variables
Section VI: Mock Up of the Visual Interface
Section VII: Game Components

Section VIII: GamePlay

Section IX: Test Data

Section X: Possible Hardships and Solutions

13
17
20
23
26

Section I: About Us & Overview

Jonathan Yang: Team Leader

Keerthana Krishnan: Team Presenter & Editor
James(Zijian) Guo: Mascot

Colby Frison: UI Design

Eric Zhu: Secretary

We are a group of students attending Seven Lakes High School who have been commissioned to
create a digital adaptation of the board game Forbidden Island™ for educational purposes. This is our

outline for the work, which we will complete in the upcoming weeks.

Our goal is to complete the game by the end of the next six weeks, and commence to perfect the
digital game interface in the following six weeks before presenting the product to our classmates. We have
distributed certain jobs amongst ourselves in order to carry out the functions needed to complete planning,

presenting, programming, and testing our final product.

We planned our code for this project by creating a UML diagram which details the interfaces,
enumerations, classes, variables, and methods required for this project to run. We also summarized the
UML so that the criteria for each class is clearly defined for each member of the group. We met on Zoom
during the weekend to ensure that all participants have a clear understanding of what their role is in making
sure that this project is a success. We then wrote a technical report detailing our findings and organization
of the program. We have outlined classes and functions for the game, player, cards, tiles, and treasures, and
we have planned for the game to smoothly carry out functions such as drawing the island, rotating the turns,

keeping track of treasures captured, and flooding and sinking islands.

We will, by the end of the fourth six weeks, finish all aspects of the program to be ready for use.

Section II: Distribution of Work

e The workload for the prospectus and presentation of the program were distributed as follows:

o

o

The Ul/Game visual design and processes are done by Colby Frison.

The Class UML/hierarchy and interactions are done by Jonathan Yang and Zijian Guo.
The test-cases and problem finding are done by Jonathan Yang and Eric Zhu.

The revising and editing is done by Keerthana Krishnan.

Formatting is done by Zijian Guo and Eric Zhu.

Additional features of the program will be implemented by Zijian Guo.

The Google Slides presentation is created by Everyone.

e The workload for coding and debugging of the program will be distributed by classes as follows:

o

o

All enumerations are to be implemented by Keerthana Krishnan and Jonathan Yang
IslandTile and IslandGrid are to be implemented by Eric Zhu

Treasure and Game are to be implemented by Jonathan Yang

Player is to be implemented by Keerthana Krishnan

GamePanel and Application are to be implemented by Colby Frison

Section III: Time Outline

All members of the team were assigned roles at the beginning of the project, which were

implemented individually, but reviewed over as a team

e Completed Milestones:

o

On October 12, 2021, Zijian Guo and Jonathan Yang started the outline for the

technical paper.

On October 13, 2021, the entire team viewed the rules of the game and

brainstormed how we would approach the game.

On October 14, 2021, we created and distributed roles and responsibilities to

each member of the team.

From QOctober 15-October 17, 2021, Jonathan Yang worked on the UML
diagram, completing it by the October 17 due date (many revisions were made

after, but the basic structure was created).

On October 18, 2021, Keerthana Krishnan started inputting the information from
the completed UML into a Google Slides presentation.

From October 20, 2021 to October 23, 2021, the GUI was designed by Colby

Frison.

Planned to finish the rough draft of the prospectus by October 20, 2021, but
completed on October 22, 2021.

On October 23, 2021, the entire team held our first outside-of-school meeting,

and discussed the slideshow.
Over the next week, from October 23-30, 2021, we refined our data.

On October 29, 2021, we wrote the gameplay, test data, and edited what we had
of the paper.

On October 30, 2021, we held our second meeting in order to finalize the

slideshow and presentation.

o From October 28 to November 3, 2021, we reviewed and finalized our

prospectus and presentation, ensuring its accuracy, detail, and presentability.

o On November 1, 2021, we held a session over Zoom to review the technical

paper.

© On November 3, 2021, Keerthana Krishnan updated the presentation and the

entire team reviewed the technical paper.

o On November 4, 2021, we presented our report and slideshow.

e Projected:

© On November 5, 2021, we will hold a meeting to set up code sharing within our

team and begin coding

o From November 5, 2021 to February 12, 2021, we plan to complete the code of
the project

o On January 4, 2021, we will complete the classes and begin debugging
o On February 12, 2021, we will complete the project in its entirety

© On February 14, 2021, we will submit the final project

Section

game and
graphics for

single rounds

IV: Current UML:

simulatesb

Key

<<Panel>> GamePanel implements Game

- awaitAction() : GameAction
+ doAction(GameAction)

+ refreshUl()

+ pause()

+ resume()

Solid Square arrow: uses closed instance of
Dashed " arrow: uses external instance of
Solid Triangle arrow: extends
Dashed Triangle arrow: implements

\V

GameAction

program; controls
the game through

+ action : final GameEnum
+ number : final int
+ tilel, tile2 : final IslandTile

GamePanel

entry point of th&

Application

+ main(String[]) : static

Vi

<<enumeration>> GameEnum

+ TRADE_TREASURE
+ MOVE_RELATIVE

+ MOVE_ABSOLUTE
+ SKIP_TURN

+ USE_CARD

IslandTile

+ name : final String

- pawns : Collection<Player> = {}
- state : IslandState = Normal

- treasure : Treasure = null

=Xy int

- board : IslandGrid

+ getState() : IslandState

+ flood()

+ shoreUp()

+ remove(Player)

+ add(Player)

+ viewTreasure() : TreasureType

+ takeTreasure()

+ equals(Object) : boolean

+ getRelative(Direction) : IslandTile

«enumeration»
Direction

NORTH
EAST
SOUTH
WEST

i ‘ ’ T
| l
| |
| | ¥
| «enumeration» P > <<interface>>
| IslandState | ! <<extends>>. > Renderable -
| | [
| NORMAL : : + getlmage() : Bufferedimage < |
| | FLOODING i ! I |
| SUNK : | ‘ |
I 1 1
| i | | !
| L .
1
! : I <<interface>> } |
: | : Card " I :
I AN b |
! 1) 1
| |
| | | 1
I i | <=, ! | i
: ! ! ‘ | | | :
. . | | ‘ oo
| |
| | ! <<implements>> | | | :
| | I
! ! ! | I <<implements>> | |
| L ! ! ! |
| : : FloodCard : } } |
I i i I [| !
[——————— | |
! I +tile : final IslandTile | | 1 } |
: : : <<enumeration>> | :
I I TreasureCard ! I
I : ’ | ! I
| IslandGrid | | |
| | SANDBAG) } |
: + L : static int= 0 (fools landing) : HELICOPTER «exllnds» | :
! +G1,62,G3,G4 : static IslandTile (spawn [WATER } [
: Gates) : I :
1 +T1a,T1b,T2a,T2b,T3a,T3b,T4a,T4b : ! ’ } |
: static IslandTile = ... (treasure tiles) ! | :
| - grid : IslandTile[][] CardStack <T> | |
1 | |
: «usen | :
| + getTile(String) : IslandTile ’Cgii??n“ﬁ_’l‘_; ! i
1 + getTileAt(int, int) : IslandTile | !
1 - discarded : . !
i /N Cole;:tiun<T> «enumeration» } !
: | TreasureType I :
| |
| | | |
|
: } * Draw():T WATER 1 !
| <<enumeration>> | (automatically calls WIND | I
! I shuffle when I !
1 PlayerRole | needed) EARTH I |
1 | E - |
I | Pot | - shuffle() (returns +name : final String ! |
| | DRIVER | discarded back into | |
! ENGINEER «use» toBeDrawn and | |
| | ExPLORER ! shuffles) ! |
| MESSENGER I stores datd™ | :
|| NAVIGATOR = } for a single : W
1 + name : final String | treasure Treasure
: + legalMove(Player, int dx, int dy): boolean |
1 + legalGive(Player): boolean } + type : final TreasureType
| + legalShoreUp(IslandTile): boolean | 0.28 - taken : boolean
1 .. P
H } - accessibleTiles : IslandTile
1 I
1
I
I

V4

Player

+ role : final PlayerRole
- tile : IslandTile
- hand : TreasureCard([]

+ getTile() : IslandTile

+ getTileAt(Direction) : IslandTile

+ move(Player, int dx, int dy) : boolean

+ giveCard(Player, TreasureCard) : boolean
+ getHand() : TreasureCard[]

+ addCard(TreasureCard) : boolean

+ useCard(TreasureCard) : boolean

' 0.3

Interface Game

+ grid : final IslandGrid

- players : final Player(]

- floodCards : CardStack<FloodCard>

- floodLevel : Floodindicator

- treasureCards : CardStack<TreasureCard>

+ raiseWaterLevel(int)
+ drawTreasure(int) : List<TreasureCard>
+ discardTreasure(TreasureCard)

+ take()
+ taken() - boolean
+ accessPortSunk() : boolean

Floodindicator

+ getFloodLevel() : int

+ tradeTreasure(Player)
+ drawFlood(int) : List<FloodCard>

+ increaseWaterLevel()
+ increaseWaterLevel(int)

Section V:

Classes, Methods, and Variables

The Game interface will contain all the processes of the entire simulation.

«» Public Instance Variables

>

The final IslandGrid grid will create the Island.

«» Private Instance Variables

>

>

The final Player array players will ensure that the Game rotates between one

Player and another in a consistent manner.

FloodCards is an ArrayList of FloodCard values, and it will represent the deck

of Flood Cards.

TreasureCards is an ArrayList of TreasureCard values, and it will represent the

deck of Treasure Cards.

The integer floodLevel will represent the current value of the FloodMeter.

< Methods

>

The raiseWaterlevel method receives an integer value representing the amount to
increase the water level by (no need to check if treasure cards contain flood cards,

only need to pass in the “Waters Rise” card count)

The drawTreasure method receives an integer value of the number of cards to

draw and returns a corresponding List of TreasureCards

The discardTreasure method receives a TreasureCard value and adds the card to

the discarded collection.

The tradeTreasure method receives a Player value and attempts to exchange the

cards in the Player’s hand with the respective Treasure.

The drawFlood method receives an integer value of the number of cards to draw
and returns a corresponding List of FloodCards, or if no arguments are given, will

default to the water level of the game.

The IslandTile class will represent each islet tile of the bigger island.

+» Private Instance Variables

>

The final String name holds the name of the IslandTile

«» Public Instance Variables

> The Player Collection players will hold the values of the players situated on the
tile.

> The IslandState will be set to Normal at the beginning of the game and change to
Flooded if it is flooded by a card.

> The Treasure value_treasure will be set to null.

> The integer values x and_y will represent the location of the IslandTile.

> The IslandGrid board represents the current IslandGrid layout.

% Methods

> The method viewTreasure will return the TreasureType (which stores a
representation of the treasure) available on the tile if the IslandTile corresponds

to a certain untaken treasure, otherwise null if there is no treasure.

> The method getState will return an IslandState Normal, Flooded, or Sunk to

communicate the state of the Island.

> The methods flood and shoreUp will change the IslandState to more or less

flooded, respectively.

> The methods addPlayer and removePlayer will receive a Player and will allow
the Player to move on and off the IslandTile.

> The equals method compares IslandTiles in order to allow the IslandTile to be

stored in a Set.

> The method takeTreasure will remove the Treasure from the tile and set the state

of the corresponding Treasure to “captured” (validity check required by caller).

The IslandGrid class will create a grid of all the IslandTiles, which will represent the game
board.

+» Private Instance Variables

> The public IslandTile_fields (i.e. L, G1, T1a) correspond to important island

positions

«» Public Instance Variables

> The internal 2D Array is initialized with IslandTiles in a random order.
% Methods

> The getTile methods return IslandTiles based on provided information.

The Treasure class will represent the items the players can capture. It will be used to determine

the outcome of the game.

¢ Public Instance Variables
> The public final TreasureType corresponds to the type of treasure (Earth Stone,
Statue of Wind, Crystal of Fire, Ocean's Chalice).
% Methods

> The take method changes an assigned boolean value to reflect whether the Player

has captured the treasure.
> The taken method returns whether the piece has been taken.

> The accessPortSunk method returns whether the piece can still be captured. If this

method returns a value of false, the game is over.
The Card interface will organize the different types of cards for the CardStack class
The CardStack cl/ass will model a stack of cards.

The FloodCard class implements Card and will link to an island, automatically causing it to

enter a more flooded state when drawn (exists solely for organizational purposes).

% Private Instance Variables
> The public final IslandTile tile stores the IslandTile which it floods.

The TreasureCard enumeration will either hold a treasure value OR a special value (Waters
Rise, Sandbag, Helicopter Lift).

The FloodIndicator class will store the flood level and generate the image

The Player method controls and organizes the different functions of the Players.
% Private Instance Variables
> The TreasureCard Array Hand represents the Player’s hand
> The IslandTile

«» Public Instance Variables

> The Player will store a final PlayerRole enumeration of: Pilot, Driver, Engineer,

10

Navigator, Messenger, and Explorer; the enumeration will have methods that
function as role-specific condition checkers, including LegalMove, LegalGive,
and LegalShoreUp (which returns true if the specified action is legal).

% Methods

> The getTile method returns the Island the Player is on.

> The getTileAt method receives a Direction enumeration and returns an Island to

the corresponding Direction in relation to the location of the Player.

> The move method will return true if the Player can move (the Player is passed as

an argument to account for Navigator moving others)

> The giveCard method receives another Player and a card, and returns whether the

give is executed (it will be executed if legal)

> The getHand method returns an Array of TreasureCards which will show the
Player’s hand (will be a subarray of the Player’s hand).

> The addCard method receives a TreasureCard, and if the Player’s hand is less
than 5, the next null value in their hand will become the TreasureCard, a boolean

value will be returned specifying whether the action was successful.

> The useCard method will remove a TreasureCard from the Player’s hand and

will return true if successful.

The Renderable interface will require children classes to implement a method that allows the

element to be drawn onto the screen
The enumeration GameEnum will hold the possible moves in a game

% Public Instance Variables
> TRADE_TREASURE holds the method to trade TreasureCards.
> MOVE_RELATIVE holds the method to move to legal IslandTiles relative to the
Player.
> MOVE_ABSOLUTE holds the method to move to another IslandTile.
> SKIP_TURN allows the Player to skip or end their turn.
> USE_CARD allows the Player to discard 4 TreasureCards and capture a

Treasure.

1

The GameAction class will execute all the processes of the Game

% Public Instance Variables
> The final GameEnum action will allow the class to access the values in the
enumeration listed above.
> The final integer number will store any needed number value to communicate an
action (mainly, if move absolute contains more than 1 player on the starting tile, it
will store a bit collection of players that are moved)
> The final IslandTile values tilel and tile2 will indicate any tiles needed to

communicate an action (specifically, starting and ending tiles)

The GamePanel c/ass will implement the Game inferface and handle all user interfaces and

GameActions.

% Methods

> The awaitAction() method returns the next GameAction of a user.

> The doAction method receives a GameAction and allows for the moves to be
executed.

> The refreshUI() method updates the graphics data and repaints.

> The pause() method disables players from moves.

> The resume() method undoes pauses and allows the players to move again.

The Application class will obtain information like the seed needed to generate the board and run

the simulation.

12

Section VI: Mock Up of the Visual Interface
Menu/Starting Panel

The menu allows the player to either start the game, learn the rules, or quit the game.

Starting Value Selection

This display uses buttons, so that the player cannot enter an invalid response. They can choose

to play with 2, 3, or 4 players. They can also choose a novice, normal, elite or legendary level of
difficulty.

Number of players

o o (@) 4

Difficulty

() Novice (® Normal () Elite () Legendary

13

Game

The cards and treasures will be laid out in the pattern seen below. On the top left corner, a button
for the pause menu is displayed. On the upper center area, there is a space on which when
treasures are captured, they will be displayed. The rectangle and arrow on the extreme right will
show the current flood level. On the bottom, the players, their roles, hands, and inventories will
be depicted. There is also a box to tell how many more actions are player can execute in their

turn and a button to prematurely end a player’s turn.

Collected Treasure

Flood level

- 2

Player 3 Player 4

Pause Menu

If a player wishes to pause the game, they must click the menu button. On the pause screen, they

can choose to resume play, review the rules, or end the game.

14

Win Screen

When all four treasures are captured and the players escape Fool's Landing, this graphic will be

displayed.

Congratulations!

You've escaped the island!

Return to Menu

15

Lose Screen

If a player cannot escape a sunk tile, Fool's Landing sinks, or all the treasures are not captured,

this graphic will be displayed.

Return to Menu

16

Section VII: Game Components

Game Tile
The tile graphic represents a piece of the
tile can have three states: these are, in order

of increasing states of flooding: Normal,
Flooded, and Sunk.

A flooded tile can be reverted to the normal state by
the process of shoring up. However, if a tile reaches
the Sunk state, it cannot change its state nor interact

with players (except for diver) for the remainder of

the game.

Game Board
A two dimensional array of independent island
tiles, arranged like the adjacent image, will be

generated randomly.

1

Cards Treasure and Flood Card Stacks

Flood cards are drawn from the flood pile and afterwards
discarded in the flood discard pile. Treasure cards are
drawn from the treasure pile and afterwards discarded in

the treasure discard pile

Flood Card
Flood Cards correspond to tiles. When drawn, the tile
Flood Treasure
enters a more flooded state (In increasing order: Normal, Discard Discard
Flooded, and Sunk).

Treasure card

Treasure

Each corresponds to either treasures (traded in on
specific tiles and 4 cards of the same type needed to
capture each treasure), or special actions, which include

“Waters Rise!” (increases flood level, resets the flood

deck, and redraws flood cards), “Helicopter Lift” (used

to end the game or to move any number of players from

one tile to one other tile), and “Sandbag” (used to shore

up any one tile).

Treasure

The four treasures are the Earth Stone, the Crystal of Fire, the 1raasure Piece

Statue of the Wind, and the Ocean Chalice. Part of the goal

of the game is to capture treasures by trading in 4 cards of the }“g I i ’

same treasure in a designated tile. Collected treasures will be

displayed in the “Collected Treasure” box. The players win

Collected Treasure
when all four treasures are captured.

Collected Treasure

18

Flood Indicator

As the game progresses, the water level will rise, and this will be
displayed in the flood indicator. The number the water is raised to on the
flood indicator shows the number of flood cards to draw at the end of a

player’s turn.

If the indicator reaches the skull and crossbones, the players lose.

Fieces
Players

The players are parts of the game that users of
the game interact through. They are
represented in the game by pawns, which mark
the position they are at on the island, roles,
which describe special abilities of each player,
and their hands, which shows the cards they
currently have. A player’s hand is limited to

five cards.

Current
player hand
(highlighted)

19

Section VIII: GamePlay

20

Initialization

1.

To start the game, show an option panel with rules, which allows the users to select the
number of players, seed to shuffle the cards, and game difficulty. This will be a
JOptionPane and the values returned will provide the information needed to instantiate
the Game.

Afterwards, the correct number of Players are instantiated with random and unique roles
in the Game, stored in an ordered collection.

The IslandGrid is instantiated, which will initialize the board by shuffling and
distributing copies of 24 pre-generated IslandTiles

The set of pre-generated FloodCard and TreasureCard collections are copied and
shuffled. The six FloodCards drawn from the deck will be enacted, flooding the
corresponding Islands, and two TreasureCards will be dealt to each player. If a “Waters
Rise!” card is drawn, it will be returned to the deck, and the TreasureCard collection will

be shuffled again.

Game Loop

5. Now the TopLevel class will progress through the game, specifically, providing a button

to view options and the Game itself. The TopLevel will call functions in the Game to get
and execute every move through the Game while the Game is only responsible for
providing these functions (see UML), so that the data for WIN/LOSS can be intercepted
and displayed by the TopLevel.
The TopLevel container will also display the number moves made in a player’s round.
Game will display and return all processes that occur as part of the actual game (if legal,
otherwise will return nothing) To avoid any possible misclicks, the player will be made
to confirm their move:

a. When moving a player, clicking the game piece causes it to be highlighted, then

selecting its destination piece will complete the move.

b. When shoring up a tile, right clicking on the tile will create a dropdown menu,
and selecting the “Shore Up” option will complete the move.

c. Ifaplayer is on a treasure tile and has four cards matching the tile, a button will
appear to the bottom right that allows the player to capture the treasure.

d. Clicking a card from the current player’s inventory allows the player to give cards
to a player who has fewer than 5 cards (and if it is a special card, the entire board
is highlighted so that the tile(s) that it will be used on can be selected), clicking
the card again will deselect it:

1. To use a “Sandbag” card, select it out of the inventory, and select the tile it
will be used on.
ii. Touse a “Helicopter Lift” card, select it out of the inventory, and select
the start and destination tiles.
8. Ensure that once all treasures have been collected, the “Collected Treasures” box will be
highlighted, and if the players are all on Fool's Landing, any “Helicopter Lift” cards will
be highlighted (the getlmage function of some cards will be written to return different

values depending on the stage of the game).

Endgame

9. Once a game ends, the option to reset the game along with the outcome of the game will

be displayed.

21

Logical Flow

S

Next Player

Draw 2 Treasure
cards

Initialize shuffled Give 2
Initialize Game . IslandGrid " non-"Waters
N Ask for startin ! .
object ™ d 9 > Cards, Players, |] Flood G tiles |~ Rise" cards to
ata
and flood level each player
Player move
No-
o
Yes Process move
(0-move actions N Deduct number Yes
will deduct 0 > ’ of moves > >
moves)
Yes
Show final displ: J .
ow final display l Rise water level
Y Lose? and shuffle back Yes

unsunk flood
cards

20ntains "Watel

No_p

Draw flood cards

22

Section IX: Test Data

Initialization

Case occurrence

Appropriate game response

When the option panel is displayed, we will
play the game with 2, 3, or 4 players by
selecting the respective option and a “Start
Game” button.

This ensures that roles are randomly assigned
only once to each player. And the program
will draw the IslandGrid, Players, Cards, and
FloodMeter. This will also ensure that the
difficulty level is reflected on the FloodMeter.

Six FloodCards are drawn, and two
TreasureCards are dealt out to each player.

This will test the methods that detect a
“Waters Rise!” card and shuffle it back in the
deck in addition to testing the flood()
method.

Game Loop

The player executes their turn.

This ensures that the simulation allows for the
player to execute no more than three legal
moves and that moves unique to certain roles
only function for the player with that role.

The player chooses to end their turn.

This ensures that the turn will automatically
be rotated to the next player.

The player chooses to play a special card.

This ensures that the special cards of
“Helicopter Lift” and “Sandbag” may be
played at any time by any player.

The player plays a Sandbag Card.

This will ensure that the tile the card is placed
upon will be deterred from changing to a
Flooded state. If the tile is already in a
Flooded state, it will be deterred from
entering a Sunk state. This should be allowed
at any time in the game.

The player plays a “Helicopter Lift” card

This will move all the players on one tile to
another tile. This will also allow players
situated on “Fool’s Landing” to escape the

23

Island, which is required to win.

The player moves to an adjacent tile.

This will ensure that the player’s pawn will
change position to another tile by exactly one,
or in the case of the Navigator, 2 tile length(s)
east, west, north, south, or in the case of the
explorer, diagonally. Additionally, if the
player is the Navigator, this move will test
whether said player, and said player only, is
able to move another pawn up to two adjacent
tiles. If the player is the Diver, they should be
able to skip over tiles that return a state of
Flooded. We will also ensure that the pilot
may move anywhere.

A player escapes a sunk tile by swimming to
an adjacent, unsunk tile.

This ensures that game allows the player to
swim to an adjacent tile if possible. If not, the
game should automatically end.

A player shores up an island.

This will ensure that a player, during a turn,
can only shore up one, or in the case of the
Engineer, 2, tiles that return a state of
Flooded, that are adjacent, or in the case of
the Explorer, diagonal, to the player.

A player discards four TreasureCards

If all four TreasureCards have an equal
TreasureType, we will test whether this action
will result in the respective Treasure’s taken
method returning a value of true and changing
position into the box labeled “Captured
Treasures.” If not, nothing should happen.

A player decides to give a card to another
player.

This will test whether the players can carry
out those actions with the condition that
players may not move to or shore up tiles out
of reach, capture non-matching treasures, nor
give to themselves. As we play the round, we
must check that the players can only hold five
cards at a time. This should only be possible
if both players are on the same Island.

The player successfully executes three moves.

At the end of the turn, we must ensure two
TreasureCard and an amount of FloodCards
corresponding to the number on the
FloodMeter are automatically drawn.

24

The player draws a “Waters Rise!” card
during gameplay.

This ensures that any “Waters Rise!” cards are
automatically used to raise the water level on
the flood meter before being shuffled back
into the deck of used flood cards to
reintroduce all the discarded cards into a new
deck.

The TreasureDeck runs out.

All discarded cards are immediately and
automatically reshuffled into a new deck.

Endgame related

Players use a “Helicopter Lift” card on Fool's
Landing without having collected all 4
treasures.

The game is lost, and the lost game graphic
will be displayed.

All the treasures are collected, all players
returned to Fool's Landing, and a “Helicopter
Lift” card is played.

The game is won only when these conditions
are satisfied. The win screen is displayed.

Both locations pertaining to a treasure are
sunk.

The game is lost, and the lost game graphic
will be displayed.

The game has reached an outcome.

The game ends after, and only after, it has
reached a definitive outcome, and the
appropriate outcome will be displayed.

25

Section X: Possible Hardships and Solutions

During this endeavor, it is very likely that our team will encounter hardships and
shortcomings. Fortunately, we have planned out solutions in the case of the most likely

contingencies.

Special abilities, such as the Explorer and Navigator roles may prove challenging due to
the specific abilities afforded to each role. The difficulty stems from allowing a certain role to
access a certain ability while simultaneously barring the other players from accessing said ability.
This will be remedied by legal checks for each role. For that of the Navigator role, the checks
will accept the player being able to move others when it is the Navigator’s turn. The Navigator
will be afforded those abilities by a boolean method which will return a value of true for the

Navigator only.

A player will be able to give to another player despite the turn because receiving a card
will not be restricted by the strict cycle of turns. Similarly, a player will have the ability to use a
special card out of turn because it will be initiated by selecting the card from the inventory box
rather than the player’s hand. This will be triggered at the start and end of a turn when a boolean
will be invoked to check if the player has more than five cards. If so, the player will trigger the
discard action, where they have to use or discard cards until they have five or fewer cards, and

they will not be able to receive additional cards without doing so.

We may have trouble communicating while coding, which can be remedied by a GitHub
for our group, our Discord server, and our group’s page on Canvas. This will ensure that we can

discuss aspects of the project at any time.

26

